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Model parameters

Parameter Symbols

used

throughout

Default Value

(Source or

Derivation)

Units

Growth rate μ no default
(optimized for through
binary search process)

h-1

Growth-associated
maintenance
requirement

GAM 35
(reduced from the
amount in (Feist et al.,
2007) to account for the
portion directly
modeled)

mmol ATP gDW-1

Non-growth-associated
maintenance
requirement

NGAM 1
(reduced from the
amount in (Feist et al.,
2007) to account for the
portion directly
modeled)

mmol ATP gDW-1 h-1

Unmodeled protein
proportion of proteome

Q 0.45
(based on a rough
approximation and
(Scott et al., 2010))

unitless

proportion of RNA that
is mRNA

fmRNA 0.02
((Bremer and Dennis,
1996) as 1-fs and

constant according to
(Rosset et al., 1966))

unitless

proportion of RNA that
is tRNA

ftRNA 0.12
(Calculated using the
formula 1-(1-fs)-(1-ft)
with symbols taken
from
(Bremer and Dennis,
1996) and constant
according to (Rosset et
al., 1966))

unitless

proportion of RNA that
is rRNA

frRNA 0.86
((Bremer and Dennis,

unitless
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1996) as 1-ft and

constant according to
(Rosset et al., 1966))

Median enzyme
efficiency

65
(In the range of the
average enzyme from
data in (Bar-Even et al.,
2011))

s-1

Flux ratio between the
two NADH
dehydrogenases

1:1 (NDH-1:NDH-2)
(As in (Feist et al.,
2007))

unitless

mRNA degradation
constant

kdeg
mRNA 1/5

(≈80% of all mRNAs
had half-lives between 3
and 8 min in (Bernstein
et al., 2002))

min1

Average molecular
mass of RNA
nucleotide

mnt 324
(Bionumbers Database
(Phillips and Milo, 2009)
ID 104886)

Da

Average molecular
mass of amino acid

maa 109
(Bionumbers Database
(Phillips and Milo, 2009)
ID 104877)

Da

Molecular mass of
RNA component of
ribosome

mrr 1700
(Bionumbers Database
(Phillips and Milo, 2009)
ID 100119)

kDalton

Characteristic
(average) molecular
mass of a tRNA

mtRNA 25000
(Bionumbers Database
(Phillips and Milo, 2009)
ID 101177)

Da

GC fraction for E. coli
genomic DNA

0.507896997096

(Calculated from

genome sequence

given in (Blattner et al.,

1997))

unitless

# ATP molecules
hydrolyzed per
nucleotide for RNA

0.25
(Assumed average as
in (Thiele et al., 2009))

ATP molecules
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degradation

# nucleotides
transcribed from DNA
template before sigma
factor dissociation

16
(Assumed average as
in (Thiele et al., 2009))

nucleotides

# ATP molecules
hydrolyzed per
rho-dependent
transcription
termination event

3
(Assumed as in (Thiele
et al., 2009))

ATP molecules
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Growth rate-dependent demand reactions

DNA

base

# in genome

given a total

length of 4639675

with a GC fraction

0.5078

grams/mol

(removed

leaving group)

mol grams

A 2283648.035 312.202 3.79209E-18 1.1839E-15

T 2283648.035 303.187 3.79209E-18 1.14971E-15

C 2356026.965 286.16 3.91227E-18 1.11954E-15

G 2356026.965 328.201 3.91227E-18 1.28401E-15

Taking the sum,
we find there are

4.73716E-15
grams of DNA per

genome

The numbers used in the table above come from (Bremer and Dennis, 1996).

growth

rate

(doubling

per hour)

genome

equivalent

s

gDNA

(given

4.73716E-15

grams of DNA

per genome)

micrograms/

109 cells
g_per_cell % cell DNA

0 1* 4.73716E-15 80** 8E-14 5.921446222

0.6 1.6 7.57945E-15 148 1.48E-13 5.121250787

1 1.8 8.52688E-15 258 2.58E-13 3.30499324

1.5 2.3 1.08955E-14 433 4.33E-13 2.51627276

2 3 1.42115E-14 641 6.41E-13 2.217078149

2.5 3.8 1.80012E-14 865 8.65E-13 2.081063181
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* This data point was assumed (not from (Bremer and Dennis, 1996)) given the fact that the

number of genome equivalents in any given cell cannot be lower than 1.

** 80 fg per cell (and therefore 80 micrograms / 109 cells) comes from slowest growing cell in

Figure 2b of (Burg et al., 2007). In this work, the mass of Escherichia coli was measured to be

110 +/- 30 fg in excess of the displaced buffer.

A sigmoid function was then fit to the ‘% cell DNA’ column of the table above. The values from

this function represent the final growth rate-dependent DNA demand requirements. The

constraint was imposed as in genome-scale models of metabolism (Orth et al., 2011).

The final function is shown below:

Cell wall

Biomass demand-like constraints were added to account for lipid/murein/LPS. These demands

were formulated to be growth-rate-dependent, but the composition itself was assumed constant.

The ‘base shell composition’ was constrained to be:
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Component Abbreviation Component Name Molecular
Weight

Demand Value

murein5px4p_Periplasm two disacharide
linked murein units,
pentapeptide
crosslinked
tetrapeptide
(A2pm->D-ala)
(middle of chain)

1892.848 mg

mmol-1
0.01389 mmol gDW-1

kdo2lipid4_Extra-organism KDO(2)-lipid IV(A) 1840.033 mg

mmol-1
0.01945 mmol gDW-1

pe160_Cytosol phosphatidylethanola
mine
(dihexadecanoyl,
n-C16:0)

691.972 mg

mmol-1
0.01786 mmol gDW-1

pe160_Periplasm phosphatidylethanola
mine
(dihexadecanoyl,
n-C16:0)

691.972 mg

mmol-1
0.04594 mmol gDW-1

pe161_Cytosol phosphatidylethanola
mine
(dihexadec-9enoyl,
n-C16:1)

687.94 mg

mmol-1
0.02105 mmol gDW-1

pe161_Periplasm phosphatidylethanola
mine
(dihexadec-9enoyl,
n-C16:1)

687.94 mg

mmol-1
0.05415 mmol gDW-1

To arrive at growth-rate-dependent cell wall dilution constraints, the cell surface area (SA) is

calculated assuming that the cell is a cylinder with hemispherical caps:

Volume of the cell as a function of μ in μm3, .(μ) l(μ) r(μ)) (μ) (4/3) r(μ)v = ( − 2 * π * r 2 +  * π 3

An empirical relation for in μm3 is .(μ)v (μ) 1.5 .4v =  * 0 * 2μ

Given these 2 functions for volume, and also an empirical function for cell length as a function of

μ in in μm, , one can obtain  through a(μ) 1.5 .6l =  * 2 * 2(ln(2)/3)μ (μ) 1.5 .15204137r =  * 0 * 2(ln(2)/3)μ

least-squares optimization problem. A similar approach was taken in (Pramanik and Keasling,

1997), with the form of equations and numerical parameters taken from (Donachie and

Robinson, 1987).

SA (in in μm2) can then be calculated as function of μ using the equation:
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.A(μ) 2 (μ) l(μ) r(μ)) (μ)S =  * π * r * ( − 2 + 4 * π * r 2

Next we assumed as in (Pramanik and Keasling, 1997) that phosphatidylethanolamine makes up

~77% of the lipids, phosphatidylglycerol 18%, and cardiolipin 5%. We also assume an individual

lipid has an area  ~0.5 nm2 and that 50% of the surface area is created by lipids (vs. proteins or

other macromolecules). We also take into account that there are 4 individual lipid layers (2 lipid

bilayers).

To calculate the grams of lipid per volume of cell as a function of growth rate, the following

formula is used:

rams of lipid per volume(μ)  lipid layers (4) fraction of surface area lipids (0.5) ... g = # *  *  

, where  is the weightedA(μ) 0 1/0.5 nm ) 1/6.02 0 ) mw  (g/mol)S * 1 6
* ( 2

* ( * 1 23
*w lipid mww lipid

molecular weight (in g/mol) using the assumed composition and individual molecular weights of

the lipids as follows: 734.03 g/mol for phosphatidylethanolamine, 827.11 g/mol for

phosphatidylglycerol, and 1546 g/mol for cardiolipin. The 106 term is to correct the units, as

SA(μ) is given in μm2 (1 μm2 = 106 nm2).

Next, we convert this to lipid grams per gDW using an assumed cell density of 1.105 g / mL cell

and an assumption that the dry weight of the cell is roughly 30% of its total weight.

Finally, we scale the demand reactions from the ‘base shell composition’ by a scalar that causes

the bottom components listed in the table above to match this calculated growth-dependent

demand for lipids.

Glycogen

The glycogen content of the cell was assumed constant in all simulations (independent of growth

rate) performed in this study. It was set to 0.023 grams Glycogen per gDW of biomass based on

the biomass objective function in (Feist et al., 2007).

The molecular weight for glycogen was taken to be 162.141 mg mmol-1.

In silico growth media composition

Growth Nutrient (model identifier) Maximum Source Reaction Flux (mmol gDW-1 h-1)

Chloride (cl) 1000

Magnesium (mg2) 1000
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Molybdate (mobd) 1000

Nickel (ni2) 1000

Selenate (sel) 1000

Carbon Dioxide (co2) 1000

Calcium (ca2) 1000

Zinc (zn2) 1000

Phosphate (pi) 1000

Oxygen (o2) 1000

Manganese (mn2) 1000

Ammonium (nh4) 1000

Cob(I)alamin (cbl1) 1000

Sulfate (so4) 1000

Selenite (slnt) 1000

Copper (cu2) 1000

H+ (h) 1000

Potassium (k) 1000

D-Glucose (glc_DASH_D) 10

Cobalt (cobalt2) 1000

Water (h2o) 1000

Sodium (na1) 1000

Iron(II) (fe2) 1000

Iron(III) (fe3) 1000

Tungstate (tungs) 1000

Cesium (cs) 1000

All of these nutrients have the potential to be limiting for growth. An upper bound of 1000 mmol

gDW-1 h-1 is used to simulate growth in batch culture whereas lower values are used in

nutrient-limited simulations. The upper bound for D-Glucose uptake is set to 1000 for all
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nutrient-limited simulations except when simulating D-Glucose limitation.

Non-default reaction bounds

As in iJO1366, the metabolic model for Escherichia coli (Orth et al., 2011), the following

reactions are constrained by default to carry no flux to avoid unrealistic behaviors.

Reaction Name

(abbreviation in iJO1366)

Lower Bound Upper Bound

dihydropteridine reductase

(DHPTDNR and DHPTDNRN

in iJO1366)

0 0

succinate:aspartate antiporter

(periplasm) (SUCASPtpp in

iJO1366)

0 0

succinate:fumarate antiporter

(periplasm) (SUCFUMtpp in

iJO1366)

0 0

succinate:malate antiporter

(periplasm) (SUCMALtpp in

iJO1366)

0 0

succinate:D-tartrate

antiporter (periplasm)

(SUCTARTtpp in iJO1366)

0 0

catalase (CAT in iJO1366) 0 0

Formate-hydrogen lyase
(FHL in iJO1366)

0 0

superoxide dismutase
(SPODM and SPODMpp in
iJO1366)

0 0

10



Optimization procedure

All ME-Model simulations presented in the manuscript maximize for growth rate subject to

environmental substrate availability bounds. As the demand reactions and coupling constraints

are functions of the organism's growth rate (μ), growth-rate optimization cannot be solved

through linear programming as in metabolic models, which rely on a biomass objective function.

Instead, to optimize for growth rate, we solve a sequence of linear programs (LPs) to search for

the maximum growth rate, μ*, that still results in a feasible LP.

The proteome-limited (Janusian and Batch growth modes) simulations differ from strictly

nutrient-limited (SNL) simulations due to different assumptions on enzyme saturation. Metabolic

enzymes are assumed to be operating at their maximal capacity (keff = kcat) in proteome-limited

growth conditions, and operating below their maximal capacity (keff < kcat) in SNL simulations.

By definition, the total biomass produced must be equal to the growth rate; proteome-limited

(Janusian and Batch growth modes) simulations also differ from strictly nutrient-limited (SNL)

simulations in how this constraint is enforced. In metabolic models, this constraint is imposed by

the definition of the biomass objective function: the total mass in the biomass objective function

sums to 1 g/gDW, and the flux through the biomass reaction is equal to the growth rate (h-1).

However, in the ME-Model, biomass production is split up into many dilution reactions for

individual peptides, RNAs, and enzymes (to allow for variable biomass composition through

gene expression) in addition to the DNA, Cell Wall, and Glycogen demand functions. Due to their

different assumptions on enzyme saturation, the proteome-limited (Janusian and Batch growth

modes) and SNL simulations differ in how the biomass production constraint is enforced, as

explained below.

Batch and Janusian simulation procedure:
For simulations in the Batch and Janusian regions (when enzymes are assumed to be

saturated), a ‘biomass capacity constraint’ is directly enforced. This additional row appended to

the constraint matrix enforces that the sum of the masses of all biomass production reactions

(component dilution and demand function fluxes) equals the growth rate.

After this additional constraint is added, the optimization problem is to maximize growth rate. As

growth rate is an input to the matrix, we perform a binary search to find maximum feasible

growth rate (and associated flux state). In searching for the maximum feasible growth rate, a

series of linear programs (LPs) are solved to determine which are feasible. There is a unique

maximum growth rate below which all LPs are feasible and above which all LPs are infeasible;

therefore, in each step of the growth rate search, the objective of the LP will not affect the final

maximum growth rate (see Figure below); in fact, the maximum feasible growth rate can be

found without specifying a particular objective.
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Depiction of proteome-limited optimization procedure. The black dashed line indicates the          

maximum feasible growth rate. Purple x’s indicate growth rates that result in infeasible LPs             

(regardless of the objective). Green and orange circles indicate objective value fluxes at different             

growth rates with an objective of minimizing glucose uptake and maximizing the production of an              

unmodeled peptide (that does not catalyze any reaction in the model), respectively.

Strictly Nutrient-Limited simulation procedure:
For simulations in the Strictly Nutrient-Limited (SNL) region, a simple ‘biomass capacity

constraint’ is insufficient. Under nutrient-limitation, if enzymes are assumed to be saturated, little

protein is actually required to meet the requirements for growth. For this reason, simply adding a

biomass capacity constraint and maximizing for growth rate (as in proteome-limited simulations,

explained above), will result in little protein production and unnecessary RNA production simply

to satisfy the biomass capacity requirement (as it is cheaper metabolically than protein), which is

not accurate. So, to simulate nutrient-limited growth, we assume that the cell makes as much

protein as possible (as it is generally the functional machinery of a cell); we then assume that

this protein is all metabolic protein and the proteins are not saturated (so do not operate at kcat).

This is accomplished through two binary search procedures. In the first, the production of a

‘dummy protein’ is maximized, and a growth rate, μ*, is searched for where growth rate is equal

to biomass dilution. The solution after this initial binary search will generally have a non-zero
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dummy protein production. Then, the growth rate, μ*, is fixed and a binary search for the minimal

fractional enzyme saturation (keff / kcat) is found. At minimal fractional enzyme saturation and μ*,

the dummy protein production will be 0. The qualitative shape of keff / kcat vs. μ obtained matches

empirical trends for individual enzymes and small-scale kinetic models (Figures 2E-2F,

Supplementary Figure 1), supporting the validity of the simulation procedure. We recognize,

however, that this is only an approximation as the scaling of metabolite levels will be specific to

the nature of the nutrient limitation and that other proteins not directly used for growth are

upregulated at lower growth rates.

Computational definition and identification of growth regions:
For most simulations (unless all uptakes of essential nutrients are unbounded, in which case it is

a Batch simulation by definition), it is not known if the specific uptake bounds will result in a

solution that lies in the Strictly Nutrient-Limited, Janusian, or Batch growth region. For these

cases, they are first solved as SNL (see Strictly Nutrient-Limited simulation procedure). If no

feasible solution is found where growth rate is equal to biomass dilution, the biomass capacity

constraint is added and the problem is solved using the Batch and Janusian simulation

procedure (see Batch and Janusian simulation procedure). Batch and Janusian regions are

distinguished by comparing the optimal substrate uptake rate with the uptake bound imposed for

essential nutrients. The growth region is defined as Janusian if the substrate uptake rate of any

essential nutrient is equal to the imposed uptake bound; the growth region is defined as Batch if

the uptake of all essential nutrients is lower than the imposed uptake bound (i.e., all essential

nutrients are in excess).

With ME-Models, linear optimization begins to encounter scaling and/or infeasibility issues. To

mitigate this problem, we used the SoPlex LP solver (freely available at http://soplex.zib.de)

(Roland, 1996), which provides for solving the individual LPs using extended precision floating

point numbers (80 bits) on x86 processors.

Discussion of central carbon flux predictions

Overall, the ME-Model flux predictions are more constrained than the M-model predictions (due

to the associated gene expression constraints, Supplementary Table 7). At the two higher

growth rates, the M-Model predictions for the flux through fructose-bisphosphate aldolase (fba),

phosphotransacetylase (pta), succinate dehydrogenase (succ), and transaldolase (tal) are

non-unique; in the ME-Model these fluxes are much more constrained (though at the lowest

growth rate of 0.015 h-1, the ME-Model has more slack due to numerical difficulties at the low

growth rate). If a sequential optimization is performed in the M-Model where first biomass flux is

maximized, then the sum of metabolic fluxes is minimized (subject to maintaining the optimal

biomass production, an approach termed pFBA (Lewis et al., 2010)), the fluxes through central

carbon metabolism become unique. The pFBA fluxes and ME-Model are very similar in the
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nutrient-limited cases (Pearson r2=0.99, r2=0.98), but differ more in the Batch case (Pearson

r2=0.73). In the nutrient-limited cases, the ME-Model naturally accounts for the

minimize-sum-of-fluxes sub-objective due to protein biosynthetic costs. In the case of Batch

culture, there are important differences in the outliers of ME and pFBA predictions. In Batch

culture, ME increases flux through pta, and decreases flux through succinate dehydrogenase

(succ), malate dehydrogenase (mdh), isocitrate dehydrogenase (icd), citrate synthase (gltA),

and fumarate (fum) (as occurs in the C13 data, Supplementary Figure 2B, but not in pFBA).

Compared to fluxomic, the one main outlier in Batch culture for the ME-Model is pyruvate

dehydrogenase (lpd); the ME-Model instead uses pyruvate formate lyase and the produced

formate is then oxidized with formate dehydrogenase.

Computation of Gene Essentiality

In the ME-Model, gene knockouts are accomplished through deleting the translation reaction(s)

for the peptide. Compared to the growth rates in the M-Model after single gene deletion, the

ME-Model has many more genes that result in low but non-zero growth when knocked-out

(Supplementary Table 4). We believe this is (at least partially) due to the multi-scale nature of the

ME-Model, resulting in undetected numerical infeasibilities (i.e., the genes are actually essential,

but required to be expressed below the precision of the linear programming solver at low growth

rates). Based on the distribution of maximum growth rates after single gene deletions, we

defined the growth rate cutoff for essential genes in the ME-Model to be 0.15 h-1 in glucose

minimal media.  We also computed the exact gene expression fluxes at 5% and 10% of the

maximum growth rate in glucose minimal media (Supplementary Table 4) using exact simplex

routines available in the QSopt_ex package (Applegate et al., 2007); some genes that are

expressed very lowly in these solutions and are not called essential by the non-exact solver

(Soplex) may actually be essential, but are not detectable without using a higher-tolerance

solver. However, a gene that is called essential by the solver (Soplex) can be confidently labeled

as essential in the model; so, the only potential difficulty is in genes that are essential in the

model, but may not be called essential by the solver. These issues will be resolved with

improved numerical methods.

Coupling constraints

(see next page)
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Escherichia coli ME-Model Coupling Constraints

1. Variables and parameters used in derivations

To estimate the growth rate-dependent catalytic rates of enzymes we use the following
variables and parameters.

P = total cellular protein mass (g gDW−1)
R = total cellular RNA mass (g gDW−1)
μ = specific growth rate (s−1)

frRNA = fraction of RNA that is rRNA
fmRNA = fraction of RNA that is mRNA
ftRNA = fraction of RNA that is tRNA

maa = molecular weight of average amino acid (g mmol−1)
mnt = molecular weight of average mRNA nucleotide (g mmol−1)
mtRNA = molecular weight of average tRNA (g mmol−1)
mrr = mass of rRNA per ribosome (g)

kmRNA
deg = first-order mRNA degradation constant (s−1)

Other than μ and P and R (which are functions of μ (eqation 1)), the others parameters
are constants in derivations and their numerical values are listed in this document. To
derive the catalytic rates of molecular machines, we rely on average values (e.g. average
molecular weight of mRNA, protein). However, when transforming these into coupling
constraints in the ME-Model, actual molecular weights of specific molecular species are
used. For computations, all coupling parameters are computed to 4 significant digits for
numerical purposes. In derivations, we use seconds as the time unit, though we convert
these into hours for ME-Model computations.

2. Emperical RNA-to-Protein ratio

In (Scott et al., 2010) the RNA-to-Protein ratio was shown to increase linearly with growth
rate, regardless of the specific environmental condition:

(1)
R

P
=

μ

κt
+ ro
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For E. coli grown at 37 ◦C, (Scott et al., 2010) emperically found ro=0.087 and κt=4.5
h−1. We use these values in our derivations throughout.

3. 70S ribosomes

3.1. Ribosomal translation rate and dilution.

Assume all rRNA is incorporated into ribosomes.
Then: nr = number of ribosomes = RfrRNA

mrr

Assume proteins are stable and not degraded.
Then: Ps = Protein synthesis rate (aa/s) = μP

maa

3.2. Hyperbolic ribosomal catalytic rate.

Let:
k′ribo = average translation rate of active ribosome (aa s−1)
fr = fraction of ribosomes that are active
kribo = effective ribosomal translation rate (aa s−1)
kribo = k′ribo fr
cribosome = mrr

maafrRNA

Then:
kribo =

Ps
nr

= cribosomeμP
R

Using (1),

(2) kribo =
cribosomeκτμ

μ+ roκτ

Thus, translation rate is hyperbolic with respect to growth rate: Vmax = κτ cribosome and
Km = roκτ .

Using, parameters from , we get:
Vmax=22.7 aa ribosome−1 s−1

Km=0.391 h−1.

3.3. Ribosomal coupling.

Using equation (2), we derive an inequality constraint setting a lower bound on ribosomal
dilution (to daughter cells)
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The inequality is imposed in a manner that takes into account the length of each par-
ticular peptide that needs to be translated. Said another way, ribosomal machinery de-
mands depend on the precise number of amino acids incorporated for each peptide in the
model.

Let:
VRibosome Dilution = dilution of ribosome (mmol ribosome gDW−1 s−1)
VTranslation of peptidei = translation of peptidei (mmol peptidei gDW

−1 s−1)
length(peptidei) = number of amino acids in peptidei

Then:

VRibosome Dilution ≥
∑
i

(
length(peptidei)

kribo/μ
∗ VTranslation of peptidei

)

4. RNA Polymerase

Let:
krnap = RNAP transcription rate (nucleotide RNAP−1 s−1)

The transcription rate, krnap, is taken to be exactly 3 times the translation rate at all
growth rates based on data from Table 1 from (Proshkin et al., 2010).

Then:
krnap = 3kribo

Using equation (2), we derive an inequality constraint setting a lower bound on ribosomal
dilution (to daughter cells)

The inequality was imposed in a manner that takes into account the length of each particu-
lar transcription unit (TU) that needs to be transcibed. Said another way, RNA polymerase
machinery demands depend on the precise number of nucleotides transcribed for each RNA
in the model.

Let:
VRNAP Dilution = dilution of RNAP (mmol RNAP gDW−1 s−1)
VTranscription of TUi

= transcription of TUi (mmol TUi gDW
−1 s−1)

length(TUi) = number of nucleotides in TUi

Then:

VRNAP Dilution ≥
∑
i

(
length(TUi)

krnap/μ
∗ VTranscription of TUi

)
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5. mRNA coupling

5.1. Dilution, degradation, translation reaction rates.

For the derivation, assume that mass of mRNA transcribed, translated, degraded, and
diluted is only in coding regions. In actuality, the molecular weight of mRNA will be higher
due to untranslated regions, which is reflected in the values used in the ME-Model.

Let:
dilmRNA = dilution of mRNA (mmol nucleotides gDW−1 s−1)
degmRNA = degradation of mRNA (mmol nucleotides gDW−1 s−1)
trslmRNA = translation of protein from mRNA (mmol amino acids gDW−1 s−1)
[mRNA] = mRNA concentration (mmol nucleotides gDW−1)

Then:
dilmRNA = μ[mRNA]
degmRNA = kmRNA

deg [mRNA]

trslmRNA = μP
maa

[mRNA] = RfmRNA
mnt

5.2. Coupling.

The mRNA dilution, degradation, and translation reactions are coupled in the ME-Model
with linear inequalities as followed:

dilmRNA ≥ α1degmRNA

degmRNA ≥ α2trslmRNA

The inequality formulation allows for some mRNA transcribed to not be translated, but it
still must be diluted and degraded.

When the inequality constraints are operating at their bounds, α1 and alpha2 will then be:

α1 =
dilmRNA
degmRNA

= μ[mRNA]

kmRNA
deg [mRNA]

= μ
kmRNA
deg

α2 =
3degmRNA
trslmRNA

=
3kmRNA

deg [mRNA]maa

μP =
3kmRNA

deg RfmRNAmaa

μPmnt

Note: The factor of 3 above is to account for 3 nucleotides per amino acid.

5.3. Hyperbolic mRNA catalytic rate.

The above formulation also results in a hyperbolic mRNA catalytic rate.
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Let:
kmRNA = mRNA catalytic rate (mmol protein (mmol mRNA)−1 hr−1)
cmRNA = mnt

fmRNAmaa
.

Then:
kmRNA = trslmRNA

[mRNA] = cmRNAμP
R .

Using (1):
kmRNA = cmRNAκτμ

μ+roκτ

Using parameters listed in this document, we get:
Vmax=cmRNAκτ = 0.5 protein mRNA−1 s−1

Km = 0.391 h−1.

6. tRNA coupling

6.1. Rates of charging and dilution of tRNA.

Let:
chgmRNA = charging of tRNA (mmol tRNA gDW−1 s−1)
diltRNA = dilution of tRNA (mmol tRNA gDW−1 s−1)
[tRNA] = tRNA concentration (mmol tRNA gDW−1)

Then:
diltRNA = μ[tRNA]

chgtRNA = μP
maa

[tRNA] = RftRNA
mtRNA

6.2. Coupling.

The tRNA dilution and charging reactions are coupled in the ME-Model with linear in-
equalities as followed:

diltRNA ≥ αchgtRNA

At the bound of equality,

α = diltRNA
chgtRNA

= RftRNAmaa

PmtRNA
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6.3. Hyperbolic tRNA efficiency.

The above formulation also results in a hyperbolic tRNA catalytic rate.

Let:
ktRNA = tRNA catalytic rate (mmol protein (mmol tRNA)−1 hr−1)
ctRNA = mtRNA

maaftRNA

Then:
ktRNA = chgtRNA

[tRNA] = μPmtRNA
maaRftRNA

= ctRNAμP
R

Using (1):
ktRNA = ctRNAκτμ

μ+roκτ

Using parameters in , we get:
Vmax=ctRNAκτ = 2.39 aa tRNA−1 s−1.
Km = 0.391 h−1.

7. Remaining Macromolecular Synthesis Machinery

For the remaining macromolecular synthesis machinery, we set kcat = 65 (s−1) across all
growth rates:

VMachineryi Dilution ≥
∑
i

(
1

kcat/μ
∗ VUse of Machineryi

)

8. Metabolic Enzymes

For metabolic enzymes, the catalytic rate is set to be proportional to the enzyme solvent
accessible surface area (SASA).

Calculation of solvent accessible surface area (SASA):

SASAEnzymei = (MolecularWeightEnzymei)
3
4 based on the empirical fit from (Miller

et al., 1987).

The specific enzyme efficiency value received for a given enzyme/complex was assumed
to be linearly dependent on its SASA value. The mean of all the kinetic constants was
centered at keff = 65 (s−1). Let SASA denote a particular value after centering.

VMetabolic Enzymei Dilution ≥
∑
i

⎛
⎝ 1

SASA
Metabolic Enzymei

/μ
∗ VUse of Metabolic Enzymei

⎞
⎠

This coupling is a gross approximation for an enzyme’s kinetic information. Its purpose is
to reward expression of large complexes (such as pyruvate dehydrogenase which is composed
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of 12 AceE dimers, a 24-subunit AceF core, and 6 LpdA dimers), given these complexes
have many more active sites (on average) than smaller enzymes. In the future, these values
can be parameterized further using condition-specific multi-omics data.
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Figure S1. Metabolic enzyme activity under nutrient limitation. 
A) Data on LacZ activity in Klebsiella aerogenes is used to calculate a value proportional to the 
fractional enzyme saturation at different growth rates in lactose minimal media. The o- (or p-) 
nitrophenol specific activity of LacZ (which is proportional to the lactose specific activity) is 
measured in lactose minimal media (Smith and Dean, 1972); the fractional enzyme saturation is 
then calculated assuming a constant biomass yield of 0.5 g Lactose / gDW. 
B) The average effective catalytic rate (flux/enzyme) is reported for a small-scale kinetic model 
(Molenaar et al., 2009) at different growth rates under nutrient limitation. 
 
Figure S2. Fluxomic fold changes. 
A and B) Fold changes in ME-Model predicted and 13C estimated metabolic fluxes are plotted. 
A) is the fold change between the fluxes shown in Figures 3A and 3B and B) is the fold change 
between fluxes shown in Figures 3B and 3C. 
 
Figure S3. Growth rate-dependent gene expression under glucose-limitation. 
ME-Model-computed fold changes (as a fraction of total proteome content) for all genes 
expressed in glucose minimal media from growth rates of 0.45 h-1 to 0.93 h-1 (chosen to span 
the Strictly Nutrient-Limited region) are plotted in rank order (grey points). Each colored 
diamond corresponds to the median fold change of all gene-enzyme pairs in a given cluster 
from Figure 4B. The error bar for each indicates the median absolute deviation (MAD) from the 
median fold change, provided this error is at least 2% of the median. 
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